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FOREWORD

Orbital flux calculations were performed for the ANS Satellite
at the request of the project office. This data is needed to deter-
mine the applicability of COS/MOS circuits for the ANS mission, for

use in the flight system (in the on-board computer and the X-ray experi-

ment logic).



Introduction

High inclination circular and elliptical trajectories (i > 55°) or low
inclination elliptical orbits of large eccentricity traverse the ter-
restrial radiation belts twice during each revolution. The vehicle
thus executes a transverse motion in L-space, passing successively
through a region of low L-values (1.0 < L < 2.0) and of high L-values
(2.0 <L< 6.6), commonly referred to as the inner zone and the outer

zone. The specified ANS trajectory performs in a very similar way.

Altﬁough the inclination of the proposed ANS orbit was fixed at 97
degrees proprade, which is identical to 83 degrees retrograde, the
trajectories were nevertheless generated for a 83 degree prograde in-
clinationﬂ This was done in 6rder to bypass difficulties usually en-
countered in the conversion of retrograde positions from geodetic polar
to magnetié B-L coordinates and only after previous test runs had estab-
lished that the results would be about egual if long enough intervals

of flight-times were considered, provided the orbit-periods were com-
paratively small (t < 2.5 hrs.) and were not an exact divisor of 24

(hours in a day).

Obviously, this happens because the same limited area of space is being
sampled by either prograde or retrograde trajectory and when the sampling

density is sufficiently increased by extending the time in orbit (the



flight duration considered in the calculations), the statistical
treatment of the data, the averaging process, produces the almost iden-

tical results.

Launch epoch for the ANS mission is given as sometime in 1972, which

falls halfway between the last solar maximum and the next solar minimum.
This means that conditions prevailing then in the radiation belts would

be similar to those of 1966-1967, except for the remnants of the artificial
"Starfish" electrons that populated the inner zone from July 1962 to about
1968. Since the electron fluxes are calculated with Vette's AE2 model

(Vette et. al, 1966) which describes the enviromment as it actually existed

back in 1964, at which time the artificials were still vastly predominant
in the inner zone, it is necessary (a) to entirely remove the artificial
component from the inner zone fluxes and (b) to account for solarlcycle
variations in the outer zone. The first objective was achieved by
decaying the fluxes exponentially with experimentally determined decay
lifetimes, defined as functions of B, L, and E (energy), up to an epoch,
when it is felt, that natural background levels had been reached

(Stassinopoulos and Verzariu, 1971). The second by increasing the

uncertainty factor attached to the results. The increase is in pro-
portion to the time spent in the outer zone, and the expected variations

of the intensities, both taken as a function of the parameter L.

Orbital flux integrations for high energy protons were performed with

the current models AP1 (Vette, 1966), AP6 (Lavine and Vette, 1969), APT

(Lavine and Vette, 1970), while low energy protons were obtained




with the APS5 (King, 1967). All are static models, including the

AE2, which do not consider temporal variations. For the protoﬁs this
is a valid representation because experimental measurements have shown
that no significant changes with time have occurred. With the excep-
tion: of the fringe areas of the proton belt, that is, at very low alti-
tudes and at the outer edges of the trapping region, the possible error
introduced by the static approximation lies well within the uncertainty
factor of 2, attached to the models. Consequently, the proton models

may be applied to any epoch without the need for an updating process.

Occasionally discontinuities appear in the proton spectra. These
"preaks" occur because the complete proton environment is being described
by three (formerly four) independent maps or grids, each valid only

over a limited energy range; for certain critical orbital configurations
the discontinuities are than produced when moving from one energy range
to another. They are caused, in part, by the exponential energy para-
meter of the model which in many instances had to be extrapolated to
make up for lacking data and, in part, to insufficient experimental
measurements over some areas of B/L-space; furthermore, the discontinui-
ties reflect the fact that the available data cannot be completely
matched at their overlap. In order to overcome such spectral breaks,

a continuous weighted mean curve is usually drawn, connecting the ad-
jacent segments; it should be regarded as an approximate spectral dis-
tribution. In doing this, the APl results (30< E(Mev)< 50) have to

be totally ignored sometimes. The ANS orbit belongs to the affected group.



Classification of orbit integrated spectra as hard or soft is relative;
it is based on an overall evaluation of near earth space in terms of

circular trajectories between equatorial and polar orbits.

Attachment A contains other pertinent background information with regard

to units, field models, trajectory generation and conversion, etc.

At this point, we wish to emphasize again that our calculations are
only approximations; we strongly recommend that all persons to receive

parts of this report be advised about the uncertainty in our data.



Results: Analysis and Discussion

Our calculations for the proposed ANS orbit are summarized in Table 1
for electrons and Table 2 for protons. The superimposed spectral dis-

tribution for both types of particles is given graphically in Figure 1.

The spectrum for electrons with energies E > 1 Mev may be classified as
"hard" for near earthbspace missions, while the protons rate a "hard"
to "very hard" classification for energies E > 5 Mev. Figures 2 and 3
are computer plots depicting the characteristic electron and proton

spectra of the flightpath, separately.

Table 3 indicates what percent of its total lifetime the satellite
spends in ''flux-free' regions of space, what percent of its total
lifetime in "high intensity'" regions, and while in the latter, what

percent of its total daily flux it accumulates.

In the context of this study, the term '"flux-free' applies to all
regions of space where trapped-particle fluxes are less than one
electron or proton per square centimeter per second, having energies

E > .5 Mev and E >5. Mev respectively; this includes regions outside
the radiation belts. Similarly, we define as "high intensity" those
regions of space, where the instantaneous, integral, omnidirectional,
trapped-particle flux is greater than 10° electrons with energies E > .5
Mev, and greater than 103 protons with energies E > 5. Mev. The values

given in Table 3 are statistical averages, obtained over extended



intervals of mission time. However, they may vary significantly

from one orbit to the next, when individual orbits are considered.

Predictably, the high energy ﬁroton population, which occupies a smaller
volume of the radiation belt, affords a larger flux-free time than the
electrons, especially for orbits with inclination i > 30°. It should
be noted that at the indicated height, a change in altitude does not
alter significantly the flux-free time afforded the satellite, in

either the electron or the proton medium.

If the flux-free time is important in mission planning, it is advisable,
before decisions are made, to evaluate and compare the radiation hazards
or effects due to the predicted electron and proton fluxes, either in
regard to the entire mission or in regard to specific mission functions
or requirements. For, while the proton intensities are on the average
about two orders of magnitude smaller than the electrons, and while
they apparently do afford more flux-free time, their greater mass and
harder spectra may prove more damaging to the mission than the more

numerous electrons with their lesser flux-free time.

In Table 4 the percentage of total lifetime T spent by the vehicle in
the inner zone (T1) and in the outer zone (T°) is given, with the per-
cent duration spent outside the trapped particle radiation belt (L > 6.6},

denoted by T® (T-external).



For any mission then:
T =T + T° + Te = 100%

Evidently, at the selected altitude, the high inclination ANS spends
almost equal amounts of its entire lifetime in the inner and the outer
zone trapping regions (see footnote on Table 4). It extendedly/yisits
regions of space outsidé the Van Allen belts (about 27% of T). The
satellite thus performs a complete sweep through magnetic L-space,
which constitutes the transverse motion mentioned in the first para-
graphy, executed twice during each revolution (orbit). Part of this
information is used to evaluate the possible contribution of the outer
zone solar cycle dependence to the uncertainty factor attached to the

results.

The following related points are submitted for consideration in con-
nection with the lifetime distribution over distinct regions of space;
a. Lasting solar cycle effects are more severely experienced

lation from solar minimum to solar maximum).
b. Energetic artificial electrons from high altitude nuclear
explosions (Starfish) have displayed a remarkable longevity, but only

in the inner zone; there they contaminated the environment for over 5

years, while they rapidly decayed to background levels in the outer



zone (within weeks to months). A planned or accidental explosion of
another atomic device with the appropriate yiéld and at the right
latitude and altitude may, very likely, produce conditions similar to
those experienced with "Starfish", transforming the inner zone again
into a radiation hotbed.

c. Transient solar flare effects (high energy solar proton

fluxes) may be especially hazardous and damaging in regions external

to the trapped particle belts.

Figures 4 and 5 are additional computer plots for the ANS trajectory
showing the vehicle encountered instantaneous peak electron (E > .5 Mev)
and proton (E > 5 Mev) intensities per orbit for a sequence of about

30 revolutions. On these graphs a periodic pattern emerges that indi-
cates a daily cycle of about 15 orbits which may shift slightly in

the plotting. This is due to the relative orbit period, which deter-

mines the precession of the trajectory.

It is known that altitude affects the peaks for both types of particles,
The tendency at the ANS level is towards greater fluxes for higher alti-
tudes. There is a relatively small variation in the peak-levels of the
electrons over a daily cycle (maximum about a factor of 5), contrary to
the protons, which.ekperience totally flux-less intervals of time, last-

ing for several revolutions of the interphase between successive cycles.
rp Y



Finally, two more computer plots are included, Figures 6 and 7, for
protons and electrons respectively, depicting the characteristic
averaged instantaneous intensities of the trajectory in terms of
constant L-bands of il earth radius width; the percent of total life-

time spent in each L-interval is shown on the same graph by the contour

marked with x's.



ATTACHMENT A

General Background Information

For the specified ANS trajectory, orbit tapes were generafed with an
integration stepsize of one minute for a sufficiently long flighttime,
so as to insure an adequate sampling of the ambient environment; on
account of its period, which determines the rate of orbit-precession,

the following circular light path of 48-hour duration was produced:

Inclination Altitude Period
83° prograde (97° retrograde) 500 km 1.577 hrs.

The orbit was subsequently coverted from geocentric polar into mag-
netic B/L coordinates with McIlwain's INVAR program of 1965 (Hassit and

McIlwain, 1967), and with the field routine ALLMAG (Stassinopoulos and

Mead, 1971), utilizing the POGO (8/69) geomagnetic field model (Cain and
Sweeney, 1970) calculated for the epoch 1972.0 (B is the field strength at
a given point and L is the geocentric distance to the intersect of the

field line, passing through that point, with the geomagnetic equator).

Orbital flux integrations were performed with Vette's current models of
the environment, the AE2 for electrons, the AP1l, AP6, AP7 for high energy
protons, and King's AP5 for low energy protons. All are static models

which do not consider temporal variations. See text for further details

on this matter.



The results, relating to omnidirectional, vehicle encountered,
integral, trapped particle fluxes, are presented in graphical and
tabular form with the following unit convention:
1. Daily averages: total trajectory integrated flux averaged
into particles/cm? day,
2. Totals per orbit: non-averaged, single-orbit integrated flux
in particles/cm® orbit,
3. -Peaks per orbit: highest orbit-encountered instantaneous
flux in particles/cm2 sec,

where 1 orbit = 1 revolution.

Please note: We wish to emphasize the fact that the data presented in
this report are only approximations. We do not believe the results to
be any better than a factor of two (2) for the protons and a factor of
five (5) for the electrons. It is advisable to inform all potential

users gbout this uncertainty in the data.
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Table 3

Circular
Inclination 83°
Altitude 500 km

Approx. Decay Epoch: 1967.6

Electrons (E > .5 Mev) Protons (E > 5. Mev)

1. Fraction of total lifetime

spent in flux-free regions¥

of space: 73.54% 89.58%
2. TFraction of total lifetime

spent in high-intensity

regions* of Van Allen Belts: 3.06% L.27%
3. Fraction of total daily

flux accumulated during (2): 54 .95% 90.29%

*¥See text for definition



Table L

Circular
Inclination 83°

Altitude 500 km

Percent of total lifetime spent inside and

outside the Trapped Particle Radiation Belt

1. Inner Zone (T1)# 47.5%
2. Outer Zone (T°) 35.9%
3. External (T°%) _16.6%

100.0%

¥This time may be subdivided into two parts:
37.5% in the L-interval 1.1 < L< 2.0
10.0% in the L-interval 1.0 <IL< 1.1
where the T1 (1.0 < I<.1) lies outside the

actual trapping region.
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